This skin could feel a breeze so gentle the average person wouldn't even notice it.
IN THE FEELS
Today's prosthetics can give people with missing limbs the ability to do almost anything — run marathons, climb mountains, you name it. But when it comes to letting those people feel what they could with a natural limb, the devices, however mechanically sophisticated, invariably fall short.
Now researchers have created a "synthetic skin" with a sense of touch that not only matches the sensitivity of natural skin, but in some cases even exceeds it. Now the only challenge is getting that information back into the wearer's nervous system.
UNDER PRESSURE
When something presses against your skin, your nerves receive and transmit that pressure to the brain in the form of electrical signals.
To mimic that biological process, the researchers suspended a flexible polymer, dusted with magnetic particles, over a magnetic sensor. The effect is like a drum: Applying even the tiniest amount of pressure to the membrane causes the magnetic particles to move closer to the sensors, and they transmit this movement electronically.
The research, which could open the door to super-sensitive prosthetics, was published Wednesday in the journal Science Robotics.
SPIDEY SENSE TINGLING
Tests shows that the skin can sense extremely subtle pressure, such as a blowing breeze, dripping water, or crawling ants. In some cases, the synthetic skin responded to pressures so gentle that natural human skin wouldn't be able to detect them.
While the sensing ability of this synthetic skin is remarkable, the team's research doesn't address how to transmit the signals to the human brain. Other scientists are working on that, though, so eventually this synthetic skin could give prosthetic wearers the ability to feel forces even their biological-limbed friends can't detect.
READ MORE: A Skin-Inspired Tactile Sensor for Smart Prosthetics [Science Robotics]
More on synthetic skin: Electronic Skin Lets Amputees Feel Pain Through Their Prosthetics
Share This Article