• The work relies on a method called optogenetics, which can make cells that usually respond to electrical signals also react to light. The approach alters mammalian cells by inserting a gene for a protein such as channelrhodopsin, which in its natural setting allows blue-green algae to swim towards or away from light.
  • In principle, optogenetics could one day be used to treat a variety of movement disorders, Vergara says. In many diseases, the nerves degrade but the muscles remain viable. “Anything that can stabilize the muscle could bring the possibility of treatment,” he says.
  • Sasse and his colleagues hope to try their method next year in live pigs — test subjects that offer several advantages over mice. A pig’s trachea is larger than that of a mouse, and closer in shape and size to that of a person. A light-emitting device suitable for pigs would also probably work in humans, Sasse says.

Share This Article