• The studies build upon previous work pioneered on DIII-D showing that these intense heat bursts - called "ELMs" for short - could be suppressed with tiny magnetic fields. These tiny fields cause the edge of the plasma to smoothly release heat, thereby avoiding the damaging heat bursts. But until now, scientists did not understand how these fields worked.
  • They found that tiny magnetic fields applied to the device can create two distinct kinds of response, rather than just one response as previously thought. The new response produces a ripple in the magnetic field near the plasma edge, allowing more heat to leak out at just the right rate to avert the intense heat bursts.
  • The new results suggest further possibilities for tuning the magnetic fields to make ELM-control easier. These findings point the way to overcoming a persistent barrier to sustained fusion reactions.

Share This Article