New 3D Material to Study Cells Reveals New Detail in Cell-Fiber Interaction

10. 14. 15 by 
Cell-Fiber Interaction

It has long been known that cells in tissues produce stabilizing network of fibers known as the extracellular matrix (ECM). The stiffness of those tissues influences cell behavior. If the ECM stiffness is disrupted, diseases such as cancer may result. However, scientists have only been studying this interaction using 2D elastic, flat, gel surfaces where cells were found to proliferate more with stiffness. This model, however, incompletely simulates the natural setting. Bioengineer Brendon Baker and polymer chemist Britta Trappmann, who are members of a team led by Prof. Christopher Chen of Boston University, have developed 3D matrices of fibers. The team embedded adult stem cells and studied their response to varying stiffness.

The Findings

The cells were found to behave differently in either model. The cells only modestly stretched the surface in the 2D model. On the other hand, they dramatically and permanently changed the arrangements of the 3D model. As the stiffness was adjusted, the cells were found to proliferate more in the softer environment, in contrast to what can be found using the 2D model. The cells apply forces to the fiber network, and with a softer network, the cells can pull in more fibers, bringing more of the matrix within reach. These findings highlight a gap in our understanding on how cells interact with the ECM. The new 3D material can hopefully allow better understanding on the complex relationship between cells and their environment.


As a Futurism reader, we invite you join the Singularity Global Community, our parent company’s forum to discuss futuristic science & technology with like-minded people from all over the world. It’s free to join, sign up now!

Share This Article

Keep up.
Subscribe to our daily newsletter to keep in touch with the subjects shaping our future.
I understand and agree that registration on or use of this site constitutes agreement to its User Agreement and Privacy Policy

Advertisement

Copyright ©, Singularity Education Group All Rights Reserved. See our User Agreement, Privacy Policy and Cookie Statement. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with prior written permission of Futurism. Fonts by Typekit and Monotype.