• They have isolated a "fingerprint" that identifies specific fluctuations in electrons that force them into pairs, causing their host material, in this case, a high-temperature superconductor called lithium iron arsenic, to make way for free-flowing, resistance-free electron pairs.
  • About three decades ago, physicists started studying "unconventional" superconductors, which superconduct at 100 times higher temperatures. That's still nowhere near room temperature, but the mechanism of why this happens at such relatively high temperatures is a longstanding mystery, and one with deep implications for quantum physics.
  • n their Nature Physics report, the generally accepted principle the team has proved is that small jiggles of the electrons' spin patterns, called spin fluctuations, are what cause the electrons to form pairs. In these unconventional superconductors, the electrons tend to form antiferromagnets, which means that electrons, visualized as little bar magnets, want to align with opposite poles together.

Share This Article